2018 Engineering Excellence Awards
GALA EVENING
TUESDAY, APRIL 17, 2018
MARRIOTT WARDMAN PARK
WASHINGTON, D.C.
Special Thanks

ACEC THANKS THE FOLLOWING COMPANIES FOR THEIR GENEROUS SPONSORSHIP AND SUPPORT OF THE 2018 ENGINEERING EXCELLENCE AWARDS.

DIAMOND

AECOM

EXP.

Gannett Fleming

HDR

EMERALD

ACEC RETIREMENT TRUST

ALFRED BENESCH

FIGG BRIDGE ENGINEERS

HNTB

MOTT MACDONALD

SIMPSON GUMPertz & HEGER

STV

SYSKA HENNESSY GROUP

T.Y. LIN INTERNATIONAL

WSP
2018 Engineering Excellence Awards
WELCOME TO THE 2018 ENGINEERING EXCELLENCE AWARDS GALA

We hope you enjoy this celebration of the year’s best engineering achievements.

A distinguished panel of judges representing a variety of professions have selected this year’s best engineering achievements using criteria such as uniqueness and originality, and technical, economic and social value. These awards affirm the vital role that ACEC member firms play in enhancing the quality of life and security of America and the world.
Gala Evening
APRIL 17, 2018

Honorary Chairs

The Honorable John Barrasso
U.S. Senate

The Honorable Thomas R. Carper
U.S. Senate

The Honorable Bill Shuster
U.S. House of Representatives

The Honorable Peter A. DeFazio
U.S. House of Representatives

Welcome
ACEC President & CEO – David A. Raymond

Presentation of the Colors
U.S. Joint Armed Forces Color Guard

National Anthem
Freddie Dunn

National Recognition Awards Tribute
ACEC Chairman – Sergio A. Pecori

Dinner

National Awards Presentation
Master of Ceremonies – Kevin Nealon
Menu

Lobster Ravioli
Buerre Blanc, Gemolata, Crispy Julienne Peppers

Seared Tenderloin of Beef
Sauteed mushrooms, carmelized onions, potatoes dauphinoise, asparagus and carrots

Opera Torte
Almond sponge, rum syrup, coffee buttercream, dark chocolate ganache

Estancia Chardonnay, Monterey County
Aquinas Cabernet Sauvignon, North Coast

A vegetarian option is available upon request of your server.
THE WINNER OF THE 2018 GRAND CONCEPTOR AWARD FOR THE YEAR’S MOST OUTSTANDING ENGINEERING ACHIEVEMENT WILL BE SELECTED FROM ONE OF THE SIXTEEN GRAND AWARD RECIPIENTS AND ANNOUNCED ON STAGE AT TONIGHT’S GALA.
As a shining example of innovative dam design, the new 880-feet-long dam is one of the largest hydraulically controlled hinged steel-gate dams of its kind. The dam replaces a previous structure that had failed, draining one billion gallons of water from the lake within 24 hours. It features eight hydraulically operated steel gates, each weighing approximately 300,000 pounds. The new dam allows the river to flow during high-water events to prevent upstream flooding and maintains the lake’s key role in the city’s economy. Expected to last at least 50 years, this essential infrastructure ensures that Town Lake will remain a destination for recreation and center of economic development.

Firm Name: Magnusson Klemencic Associates
Project Name: 150 North Riverside
Project Location: Chicago, IL
Client: Riverside Investment and Development

A dazzling example of superstructure design, this gleaming new 54-story office building has transformed a previously barren, undeveloped site into a vibrant public complex. To overcome extremely tight site constraints the project team developed a cutting-edge, blade core design that requires half the support pilings of a comparable building. The result is a 750-feet-tall, 1.25 million-square-feet tower balanced atop a base that is only 39 feet wide. Twelve water tanks at the top of the building containing 700 tons of water help to minimize building sway in strong wind conditions. A precast, prestressed concrete lid atop nearby railroad tracks provides space for a new public park featuring an amphitheater, pedestrian pathways, and retail venues.

Firm Name: AECOM & Arup (Joint Venture)
Project Name: Second Avenue Subway-Phase 1
Project Location: New York, NY
Client: Metropolitan Transportation Authority Capital Construction/ NY City Transit

The 1.8-mile project is the first major expansion of New York’s subway system in 50 years, with three new stations at 72nd, 86th, and 96th Streets, and upgrades to the existing 63rd Street station. The new stations rank among North America’s largest underground excavations, at nearly 64-feet wide, 100-feet deep and 1,600-feet long. The project team overcame challenges of building below some of the world’s most congested infrastructure and dealing with difficult ground conditions. The $4.45 billion project was completed on time and within budget— a major accomplishment for a project of this scope and size.

Firm Name: Gannett Fleming
Project Name: Town Lake Downstream Dam Replacement
Project Location: Tempe, AZ
Client: City of Tempe

As a shining example of innovative dam design, the new 880-feet-long dam is one of the largest hydraulically controlled hinged steel-gate dams of its kind. The dam replaces a previous structure that had failed, draining one billion gallons of water from the lake within 24 hours. It features eight hydraulically operated steel gates, each weighing approximately 300,000 pounds. The new dam allows the river to flow during high-water events to prevent upstream flooding and maintains the lake’s key role in the city’s economy. Expected to last at least 50 years, this essential infrastructure ensures that Town Lake will remain a destination for recreation and center of economic development.
One of the largest timber-framed buildings in the United States, the new UMass Design Building includes glue-laminated beams and columns and a cross-laminated timber composite with a concrete topping slab for the flooring. Combined they provide the strength and ductility needed to meet building code and user requirements. The structure also includes several sustainable design features, including rainwater retention systems, a green roof, and natural lighting, while encouraging the use of timber framing for other large building applications.

Ranked as the world’s fifth tallest building, and the tallest in South Korea, the Lotte World Tower is also a technical marvel. The 1,821-feet-tall, 123-story state-of-the-art superstructure features geothermal, photovoltaics, and windspire turbines to supplement conventional power with renewable energy sources. High-tech controls monitor and adjust power usage, external shading, and dimming systems to fine-tune interior temperatures and light levels. The tower features a luxury “seven-star” hotel, a shopping mall, offices, residences, and entertainment venues.

An addition to the existing Dixie Drain—an agricultural and groundwater drain that discharges into the Boise River—has led to 50 percent more phosphorus being removed from treated water before its discharged into the river. The new facility processes up to 130 million gallons of ground and surface water daily while removing 140 pounds of phosphorus per day. The result is a cost-effective solution, resulting in significantly greater water quality for a key provider of economic, wildlife and recreational benefits, and a model for other areas facing similar pollutant removal concerns.
The new five-span, 735-feet-long steel girder structure replaced the outdated rail viaduct bridge over Crum Creek by literally being slid into place. Prior to closure of the obsolete 121-year-old bridge, the project team assembled the new superstructure and the precast deck adjacent to the existing bridge supported by straddle bents built under the older structure. During the 11-week shutdown, the project team demolished the previous bridge, and laterally slid the new structure across the pier caps and onto permanent bearings using hydraulic jacks. Installation of rail connections, catenary transmission lines, and signals quickly followed. Busy commuter train service resumed as scheduled at the end of the closure, on a safer, and more contemporary structure.

The striking 620-foot long structure is Chicago’s longest pedestrian bridge, and one of only a few mono-cable, self-anchored suspension bridges in the U.S. Replacing a deteriorating structure that was inaccessible to those with physical disabilities, the new bridge provides an eye-catching crossing of Lake Shore Drive and Metra railroad tracks. It is anchored by a central pylon soaring more than 120 feet above Lake Shore Drive, with suspension cables anchored at the ends of the deck rather than in massive anchor blocks at abutments. The design also features a reverse horizontal curve to provide visitors with a panoramic view of the scenic Lakefront area.

A unique specialty crane deploys a process called Water Jet Peening (WJP), which extends the operational life of key nuclear reactor components by preventing corrosion and cracking. Weighing more than 179,000 pounds and operated by remote control, the specialty crane—which can hoist three tons—lifts, lowers, positions and supports two WJP tools—each the size of a small car—into the reactor vessel during an outage. The process uses only water to relieve stresses thus eliminating the potential for any foreign materials entering the reactor pool. The combined crane and WJP process reduces maintenance and operation costs, shortens outage durations, extends reactor life, and minimizes risk to both the reactor vessel and plant personnel.
Envisioned to “capture the sunlight and be transformed by it” during daylight and “glow with a dreamlike serenity” at night, the breathtaking Bahá’í temple more than accomplished its goals. Located in the foothills of the Andes Mountains outside of Santiago, Chile, the temple’s superstructure is comprised of nine wing-shaped translucent petals, or leaves. The underlying structures are free-form tubular space trusses rising to a top ring at the structure’s oculus. The space trusses are clad on the outside with borosilicate glass panels and on the interior with Italian marble panels. The project team constructed this complex, free-flowing design in a remote site with high seismic activity, creating one of the world’s most breathtaking centers of worship.

Firm Name: HDR | WSP USA (A Joint Venture)
Project Name: Bayonne Bridge Raise the Roadway Milestone 1 Completion
Project Location: Bayonne NJ & Staten Island, NY
Client: Port Authority of NY & NJ

Imaginative engineering delivered a new highway 65 feet above the highway it was to replace, all within the tight confines of the same arch bridge. With the bridge’s 151-feet navigation clearance too low to accommodate huge “Panamax” ships that will soon be plying the river, the project increased the clearance by constructing a roadway above the existing one, which was then demolished. More than 4,000 tons of steel strengthening plates was needed to support the structure’s temporary double-roadway condition during construction. Adding to the challenge, both the original roadway and the critical underlying shipping channel had to be kept open. In addition to increasing vertical clearance, the new bridge now has wider lanes, concrete medians, a shared-use path, and can incorporate a light rail line in the future.

Firm Name: DLZ Corporation
Project Name: Augmentation & Relief Sewer
Project Location: Columbus, OH
Client: City of Columbus

The new relief sewer reduces combined sewer overflows in the rapidly growing Columbus downtown area and brings the city in compliance with new clean water regulations. Nearly two billion gallons of combined sewage that previously overflowed directly to the Scioto River each year now flows through a new 23,000-feet-long, 20-feet diameter tunnel for proper treatment at a nearby treatment plant. The additional storage volume eliminates the need for future above-ground structures and treatment systems, saving the city as much as $175 million.

Firm Name: Simpson Gumpertz & Heger
Project Name: Bahá’í Temple of South America
Project Location: Santiago, Chile
Client: Hariri Pontarini Architects

Envisioned to “capture the sunlight and be transformed by it” during daylight and “glow with a dreamlike serenity” at night, the breathtaking Bahá’í temple more than accomplished its goals. Located in the foothills of the Andes Mountains outside of Santiago, Chile, the temple’s superstructure is comprised of nine wing-shaped translucent petals, or leaves. The underlying structures are free-form tubular space trusses rising to a top ring at the structure’s oculus. The space trusses are clad on the outside with borosilicate glass panels and on the interior with Italian marble panels. The project team constructed this complex, free-flowing design in a remote site with high seismic activity, creating one of the world’s most breathtaking centers of worship.
The striking new elevated train station features canopies of skeletal steel and faceted glass that undulate along Chicago’s Jewelers Row, while producing a dynamic play of light on the platform and street below. The project team implemented unique construction phasing and sequencing to build the new station in a dense urban environment; maintain active transit service in a heavily traveled corridor; and minimize the impact on vehicular and pedestrian traffic. The new station serves as a beautiful gateway to Downtown Chicago attractions, while enhancing perceptions of public transportation.

Soaring 100 feet above the West River, the new three-span, 1,036-feet-long arching bridge provides a dynamic gateway to Vermont. The innovative design includes two “quad wall” piers comprised of concrete columns that curve symmetrically outward in two directions. The quad wall system provides stability and allows the segmental construction of the bridge superstructure to be assembled from above, without temporary falsework in the river. The bridge’s landmark aesthetics and innovative structural design will safely and reliably serve regional motorists for at least 150 years.

The new $30 million treatment plant is the first in the U.S. to use a cutting-edge ceramic membrane filtration system. Common in Japan and Europe, the ceramic is more durable and chemical resistant, and has a longer life expectancy than commonly used polymer filters. Ceramic filters also waste significantly less water, resulting in 99.95 percent backwash recovery, well above the standard 85 to 95 percent recovery rate of conventional treatment technology. The new treatment plant can process up to seven million gallons of water per day and creatively employs gravity to reduce energy consumption and make it unnecessary to pump water to the distribution system, except in instances of extreme demand.
Advanced engineering helped the state of Iowa align its future transportation strategy to correspond more effectively with rapidly progressing transportation technologies, such as the growing use of automated vehicles. The project team analyzed a 300-mile portion of I-80—one of the state’s most critical east-west links—to determine design and operational requirements to preserve and enhance safety, mobility, and travel-time reliability. The study identified strategies for balancing mobility and access, along with designing for future needs, and right-sizing the corridor. Study results will give the state added flexibility for incorporating future transportation technologies.

A testament to imaginative infrastructure design and construction, the new Chicago Riverwalk connects downtown with the Chicago River’s natural amenities. The Riverwalk is supported by an innovative system of canopied piers, or “underbridges” that connect the walkway at six historic bridges. The precast walkways were installed atop drilled shafts that extend 70 feet beneath the water’s surface. New build-out sections ranging from 25 to 50 feet between each bridge provide diverse attractions and gathering spaces for people to enjoy the river and Chicago’s enhanced second shoreline.

A former brownfield site is home to a new science facility that affirms Northeastern University’s status as a premier research institution. The 234,000-square-feet Interdisciplinary Science Engineering Complex houses four research disciplines—engineering, health sciences, basic sciences, and computer science. The facility far surpasses current standards for energy efficiency—a difficult goal for laboratories which typically require significant energy to ensure precise, consistent conditions for research. The complex achieves 33 percent energy-cost savings and 75 percent energy savings compared to typical laboratories.
The design of a new military barracks raises the standard for the next generation of military housing. As the first new residential facility built at West Point since 1972, the six-story, 287,000-square-feet facility houses up to 975 cadets and features innovative building systems that use only half the energy of a comparable structure. Advances include a 100-percent solar-heated hot water system and radiant floor heating and cooling providing 50 percent savings in energy consumption. Integrated with its neighboring buildings in a unified style, scale and form, the barracks support West Point’s goal of a net zero energy campus.

The six-story, 240,000-square-feet building blends Cornell Tech academic facilities with offices of private technology firms to more effectively "bridge" educational and private technology sectors and improve collaboration. The Bridge features two separate towers, connected at each floor by a central causeway, which provide spectacular views of midtown Manhattan and Long Island City. The glass façade exposes the building’s unique structural system which allows the upper five stories to cantilever up to 80 feet above the landscaped campus, reflecting Cornell Tech’s aspirational and innovative mission in striking fashion.

The historic campus library needed additional space for its special collections and rare travelling exhibits. Full facility replacement was not possible. The most feasible option was to enlarge the 50-year-old building downward 30 feet. The project team crafted an innovative temporary steel shoring system to support upper floors while piers were removed and replaced. The library remained in use throughout the excavation and subsequent phases of the construction.
As the largest of its kind in North America, the new 47,000-square-foot facility provides a sustainable alternative to the incineration and landfilling of biosolids produced during the wastewater treatment process. The system consistently produces high-grade biosolids that can be safely sold for agricultural and landscaping uses. The facility also features advanced air pollution, noise, and odor control systems that reduce impacts on adjacent areas. Completed $8 million under budget, the facility is on track to pay for itself in less than nine years through operations and maintenance savings.

A complex new water supply storage tower features two separate storage tanks within a single reservoir structure to uniquely accommodate two supply zones and two pressure levels. The system provides storage of 300,000 gallons of water for one pressure zone and 1,000,000 gallons of water for the other. The project required the demolition of a 55,000-gallon water tower, a process that was complicated by the proximity of a busy airport, a historically significant building, and multiple cellular communications systems. Now seamlessly integrated into the environment, the unique dual-zone water tower will serve the city of Madison for more than 100 years.
Creative engineering transformed a long-existing flood zone into a vibrant catalyst for Meriden’s downtown economic revival. The project team repurposed long-closed shopping mall and parking lot—also a major contributor to flooding problems—into a new centrally located urban open space that promotes economic redevelopment, while doubling as a flood storage area. The conversion also restored 1,700 linear feet of once-buried Harbor Brook creating a new, more natural channel and floodplain. The site now includes an outdoor amphitheater, a naturally flowing waterway, accessible walkways, and an expansive great lawn for hosting seasonal events.

Dredging deeper channels in New York Harbor to accommodate the huge Panamax ships entering the Port of New York and New Jersey threatened two critical water mains, called siphons, that deliver drinking water to Staten Island. The project team incorporated a two-mile-long, 72-inch diameter steel siphon inside a tunnel bored at more than 100 feet beneath the Hudson River, preserving water supply and allowing dredging to proceed and preparing the nation’s third largest port for the next generation of cargo mega-ships.

A new state-of-the-art maintenance facility supports the latest extension of the Expo light-rail line, which provides service from Los Angeles to Santa Monica. Within a constrained site of less than 10 acres the project team delivered a facility that provides a multitude of cutting edge enhancements. It features a complete track network for rail car storage and maintenance, six service and inspection positions with upper- and lower-level work platforms, mechanical and electronics shops, and room for administration offices, operations, and training. Early collaboration with residents mitigated issues regarding noise, vibration, safety, and aesthetics so the facility seamlessly blends into its surroundings.
The extension of Seattle’s popular transit system adds 1.6 miles of elevated rail line from SeaTac Airport to downtown and features the Northwest’s first “net zero” light-rail station. The new station includes solar reflectance roofing and photovoltaic arrays to offset electrical demand. The project also includes street improvements, bicycle and pedestrian access, transit-oriented development sites, and public art. The light rail extension will reduce nearly 26 million vehicle miles traveled annually, saving well over a million gallons of gasoline, and eradicating more than 6,000 tons of greenhouse gases.

Firm Name: HDR
Project Name: South 200th Link Extension
Project Location: SeaTac, WA
Client: Sound Transit

The nation’s longest extradosed bridge replaces a historic but outdated vertical-lift bridge, while providing a blueprint for integrating major new infrastructure into a sensitive natural setting. To address environmental concerns, the project team optimized its mile-long, structurally complex design by eliminating two towers from the water and adding piers that resembled reeds and cattails. Extreme care was needed to prevent disturbances to nearby bald eagle nests, and to relocate mussels and endangered flowers.

Firm Name: HDR - COWI
Project Name: St. Croix Crossing
Project Location: Oak Park Heights, MN & St. Joseph, WI
Client: MN Department of Transportation

Innovative redesign eliminated a treacherous intersection where traffic accidents occurred daily in the heart of Kentucky’s scenic horse farm region. Constrained by nearby land belonging to historic Calumet farm and the Keeneland Race Course, the previous intersection included two precarious curves that had become more hazardous over time. Installing traffic lights was deemed too obtrusive, and multiple flyovers were too expensive. The project team instead incorporated a first-of-its-kind “Left Overloop” which realigned the interchange’s existing right turn loop into a left-turn overpass. The new ramp eliminated the traffic hazard at significantly less cost than full reconstruction, while also meeting the region’s aesthetic concerns.
The center of civic and commercial life early in the 20th century, Kansas City’s 1914-era Union Station needed a massive upgrade. The project team’s solutions included a new vehicular and pedestrian bridge that for the first time connects the main building directly to an adjacent parking garage; a semi-circular pedestrian plaza, a raised and wide pedestrian walkway to the building; and a new 90,000-plus-square-feet outdoor event space for concerts, festivals and other large events. The project succeeded in both renovating Union Station for the 21st Century and restoring its place as a first-class regional transportation hub.

Firm Name: Burns & McDonnell
Project Name: Union Station Western Expansion
Project Location: Kansas City, MO
Client: Union Station of Kansas City

The languishing landscape on Governors Island has been transformed into an exciting new park destination for New York City. Since 2012, the 10-acre island near lower Manhattan had been a dumping ground for construction fill dirt from a new subway line. The project team creatively converted mounds of fill dirt into steep man-made hills that soar as high as 80 feet above the nearby harbor. Innovative soil reinforcement and specialty surface elements help maintain slopes and promote protective vegetation. More than one million people visit the island annually to enjoy unobstructed views of the of the Statue of Liberty, the New York City skyline, and the Brooklyn Bridge – all from a height similar to an 8-story building.

Firm Name: Hart Crowser
Project Name: Governors Island Park and Public Space
Project Location: New York, NY
Client: West 8 Urban Design & Landscape

This massive new highway infrastructure in Downtown Dallas replaces a collection of severely deteriorated highways, bridges and support components dating back to the 1950s. The four-year-long project includes construction of more than 73 lane-miles of new highway, 37 conventional bridges, more than 60 retaining walls, and two major long-span river crossing bridges. All lanes of traffic were preserved throughout construction, with freeway closures conducted overnight to minimize inconveniences to the traveling public. Despite multiple, lengthy rainstorms and floods that forced temporary halts to construction, the project was completed on schedule and on budget.

Firm Name: WSP USA
Project Name: Dallas Horseshoe Design-Build
Project Location: Dallas, TX
Client: TX Department of Transportation
The new 650-megawatt generating station uses state-of-the-art gas turbine technology to power more than half a million homes and businesses at a cost—$645 million—that is only half that of a comparable coal-fired facility. The system also significantly reduces carbon dioxide, nitrogen oxide, sulfur dioxide and mercury emissions compared to traditional coal-fired plants. The new station requires 90 percent less water supply than older natural gas units. It is the first facility in Iowa to receive the Envision Platinum Award for excellence in sustainability design from the Institute for Sustainable Infrastructure.

Groundbreaking engineering has yielded two new launch stands critical for propulsion tank testing prior to space flight. To validate that a rocket’s liquid hydrogen and liquid oxygen fuel tanks can handle the thrust loads and stresses of launch and travel, the project team custom-designed 215-foot and 85-foot tall test stands and associated substructures that can withstand millions of pounds of thrust under a variety of test scenarios. Unlike any other similar structures worldwide, these new test stands can also be relocated or reconfigured as propulsion system technology evolves.

The venerable New York City landmark’s energy costs have been cut 25 percent by tapping into the Earth’s natural heat. Ten geothermal wells were drilled from the terrace level to an average depth of 1,650 feet to power the new chilled and hot water piping distribution system. Existing hot water radiators were replaced with fan-coil units, while ornamental enclosures were re-used to blend the new technology into existing building interiors. The city’s largest geothermal system heats and cools the Cathedral, along with the Parish House, Rectory, and Cardinal's Residence, but is so compact that it is virtually invisible to the public.
<table>
<thead>
<tr>
<th>ACEC/ALABAMA</th>
<th>ACEC/CONNECTICUT</th>
<th>ACEC/INDIANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Environmental Risk Management</td>
<td>Milone & MacBroom Meriden Green</td>
<td>HNTB Southport Wastewater Treatment Plant Expansion</td>
</tr>
<tr>
<td>Manufactured Gas Plant Remediation Project</td>
<td>Dr. Larry E. Speaks & Associates Retro Fitting a Dormant Mall</td>
<td>Jacobs Engineering Group Ohio River Bridges Downtown Crossing</td>
</tr>
<tr>
<td>GARVER Wastewater Treatment Plant Improvements</td>
<td>HDR I-75 at University Parkway Divergent Diamond Interchange</td>
<td>Jacobs Engineering Group Ohio River Bridges East End Crossing</td>
</tr>
<tr>
<td>Larry E. Speaks & Associates</td>
<td>HDR Kimberly Horn & Associates, Inc. The Ballpark of the Palm Beaches</td>
<td>Lochmueller Group I-69 Section 4 Mitigation Plan</td>
</tr>
<tr>
<td>ACEC/ALASKA - C/O BBFM ENGINEERS INC.</td>
<td>HDR Strategic Management Plans</td>
<td>ACEC/ARIZONA Akram Fleming Town Lake Downstream Dam Replacement</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR North Avenue Smart Corridor</td>
<td>GHD Bell Road Force Main Improvements</td>
</tr>
<tr>
<td>ACEC/ARIZONA Gannett Fleming Town Lake Downstream Dam Replacement</td>
<td>HDR SunTrust Park and The Battery Atlanta</td>
<td>ACEC/COLOMBIA Arup The Rainbow Bridge at Seaside Way</td>
</tr>
<tr>
<td>Gannett Fleming Town Lake Downstream Dam Replacement</td>
<td>HDR Space Launch System Test Stands</td>
<td>ACEC/COLOMBIA Burns & McDonnell Big Canyon Restoration and Water Quality Improvements</td>
</tr>
<tr>
<td>GHD Bell Road Force Main Improvements</td>
<td>ACEC/GEORGIA Atkins North America & Arcadis (Joint Venture) North Avenue Smart Corridor</td>
<td>ACEC/COLOMBIA HDR I-75 at University Parkway Divergent Diamond Interchange</td>
</tr>
<tr>
<td>HDR 20th and 25th Avenue Pump Stations</td>
<td>HDR North Avenue Smart Corridor</td>
<td>HDR Council Bluffs Interchange Bridges</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR SunTrust Park and The Battery Atlanta</td>
<td>HDR Interstate 80 Automated Corridors Planning Study</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR Space Launch System Test Stands</td>
<td>HDR Marshalltown Generating Station</td>
</tr>
<tr>
<td>ACEC/ARIZONA Gannett Fleming Town Lake Downstream Dam Replacement</td>
<td>HDR Strategic Management Plans</td>
<td>ACEC/KANSAS HDR Johnson County Gateway - Phase 2</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR North Avenue Smart Corridor</td>
<td>HDR South Lawrence Trafficway East Leg</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR SunTrust Park and The Battery Atlanta</td>
<td>Olsson Associates Chilled Water System Expansion</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR Space Launch System Test Stands</td>
<td>TranSystems Kaw Point Park Connector Trail</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR Strategic Management Plans</td>
<td>ACEC/KENTUCKY American Engineers Denes Field Transformation</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR Strategic Management Plans</td>
<td>American Engineers The Cellar at Maker’s Mark Distillery</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR Strategic Management Plans</td>
<td>GRW Frankfort Plant Board Administration Building</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR Strategic Management Plans</td>
<td>GRW Telecommunications Headend Facility</td>
</tr>
<tr>
<td>HDR Strategic Management Plans</td>
<td>HDR Strategic Management Plans</td>
<td>GRW Town Branch Wet Weather Storage & Pumping Facilities</td>
</tr>
</tbody>
</table>
HMB Professional Engineers, Inc.; Parsons Transportation Group; and Beam Longest & Neff (JV)
Louisville - Southern Indiana Ohio River Bridges Project

Qk4
East Campus Roundabout & Gateway
Qk4
The Left Overloop

ACEC/MAINE
Hardesty & Hanover
Gut Bridge Replacement

ACEC/MASSACHUSETTS
Arup
Interdisciplinary Science Engineering Complex
CDM Smith
Turnpike All-Electronic Tolling System
Gannett Fleming
Springfield Railcar Assembly Facility
Nitsch Engineering
Johnson Building Renovation
Simpson Gumpertz & Heger
Bahá’í Temple of South America
Simpson Gumpertz & Heger
Univ. of Massachusetts Design Building
STV
Boston Landing Station

ACEC/METROPOLITAN WASHINGTON
Alpha Corporation
Structural Investigation and Report
Rummel, Klepper & Kahl
Anacostia Riverwalk Trail, Kenilworth Section
Sheladia Associates
MGM National Harbor

ACEC/MICHIGAN
Benesch
I-96 at Cascade Road Diverging Diamond Interchange
HDR; Progressive AE and Zachry Group (JV)
Holland Energy Park
HNTB
US-23 Flex Route
Wade Trim Associates & NEFCO
Biosolids Dryer Facility

ACEC/MINNESOTA
American Engineering Testing and Ericksen Roed & Associates
Downtown East
HDR - COWI
St. Croix Crossing
HGA Architects and Engineers
United Methodist Church of the Resurrection Sanctuary
Kimley-Horn
Terminal 1-Lindbergh Landside Expansion
Kimley-Horn
Hennepin/Lyndale Avenue Reconstruction

ACEC/MISSOURI
Alper Audi & Geotechnology, Inc.
Olin Library Transformation
Burns & McDonnell
Union Station Western Expansion
Crawford, Murphy & Tilly
Wastewater Treatment Plant Design-Build

ACEC/MONTANA
DJ & A, P.C.
South Reserve Pedestrian Bridge
Great West Engineering
Water Treatment Plant Intake
HDR
Capitol Interchange - Cedar Interchange
HDR
Compressed Natural Gas Fueling Station
HDR; Robert Peccia & Associates
Basin Creek Water Treatment Plant

ACEC/NEW JERSEY
Boswell Engineering
Patroon Island Bridge Rehabilitation
Dewberry
Hudson River Feasibility Study

Langan Engineering & Environmental Services
Accurate Box Headquarters Expansion
Langan Engineering & Environmental Services
Cranbury Logistics Center
Langan Engineering & Environmental Services
Dwight-Englewood School Improvements
Mott MacDonald
Clinton Road Bridge Replacement
WSP USA
Route 37 EB Mathis Bridge Rehabilitation

ACEC/NEW YORK
AECOM & Arup (JV)
Second Avenue Subway-Phase 1
AKF Group
Zaha Hadid, 520 West 28th Street
Arup
The Chrysallis at Symphony Woods
Delta Engineers, Architects, & Land Surveyors/WB Engineers + Consultants
Campus Master Systems Management and Virtual Models
Gannett Fleming
Bay Park Sewage Treatment Plant Improvements
Hardesty & Hanover
Van Wyck Expressway Improvements
Hazen and Sawyer
Multi-Facility Residuals and Biosolids Master Plan
HDR | WSP USA (A Joint Venture)
Bayonne Bridge Raise the Roadway Milestone 1 Completion
HNTB
Kosciuszko Bridge Replacement Phase 1
Jaros, Baum & Bolles
N.Y. Univ. Langone Health Science Building
Langan Engineering & Environmental Services
1501 Voorhies Avenue
Mott MacDonald & CDM Smith
New York Harbor Water Siphon
2018 Engineering Excellence Awards

P.W. Grosser Consulting & Landmark Facilities Group
St. Patrick’s Cathedral Geothermal Heating & Cooling System

Stantec
Inner Loop East Transformation

STV/Tishman & AECOM (JV)
Moynihan Train Hall - Phase One

Syska Hennessy Group
Lotte World Tower

Syska Hennessy Group
World’s First 3D-Printed Commercial Office Building

Thornton Tomasetti; Weiss/Manfredi
| Turner Construction
The Bridge at Cornell Tech

WSP USA
Inspection and Load Rating for Brooklyn-Queens Expressway

WSP USA & HNTB (JV)
Conversion to Open Road Tolling at RFK Bridge

ACEC/NORTH CAROLINA
CDM Smith
McAlpine Creek Wastewater Plant CHP Improvements

ACEC/OHIO
DLZ Corporation
Augmentation & Relief Sewer

Palmer Engineering
U.S. 20 Bridge Replacement

ACEC/OKLAHOMA
GARVER
I-244 Multimodal Bridges over Arkansas River

Mead & Hunt
Broken Bow Diversion Tunnel

Tetra Tech
Chickasaw Nation “Inkana” Bridge

ACEC/PENNSYLVANIA
Figg Bridge Engineers
Crum Creek Viaduct

Figg Bridge Engineers
I-91 Brattleboro Bridge Improvements

Michael Baker International
King Khalid Air Base

Michael Baker International
Lower Hill Infrastructure Project

STV
Betsy Ross Bridge Interchange Reconstruction

ACEC/SOUTH CAROLINA
HDR
Road Evaluations over Flood Damaged Dams

Michael Baker International
Steepleshore Industrial Boulevard Extension

So-Deep - A Sam Company
South Main Street Streetscaping Improvements

Thomas & Hutton
Program, Design & Construction Management, Volvo Industrial Site

ACEC/TENNESSEE
AECOM
Gallatin Environmental Integrity Program

ACEC/Texas
GARVER
Army Radar Approach Control Renovation

GARVER
Wastewater System Master Plan and Modeling Project

Gunda Corporation
Levy Park 2.0 Reconstruction & Revitalization

Jacobs Engineering Group Inc.
Combined Heat and Power Plant

KSA Engineers
Whitehouse Dam Improvements

Parkhill, Smith & Cooper
Reverse Osmosis Plant

VRX
35Express Segment 3

Walter P Moore
Mosaic Stadium

WSP USA
Dallas Horseshoe Design-Build

ACEC/UTAH
HDR
Great Salt Lake Causeway Improvements

ACEC/VIRGINIA
Clark Nexsen
Davis Barracks, U.S. Military Academy

Gannett Fleming
Norchester Pump Station

HDR
Solving Industrial-Sized Wastewater Challenges, Phase 2

WSP USA
Dominion Boulevard Improvements

ACEC/WASHINGTON
COWI North America & Jacobs Engineering Group
Abraham Lincoln Bridge

Hart Crowser
Governors Island Park and Public Space

HDR
Factoria Recycling and Transfer Station

HDR
South 200th Link Extension

HDR
Wells Hatchery Modernization

Magnusson Klemencic Associates
150 North Riverside

Parsons
Elliott Bay Seawall Project

ACEC/WISCONSIN
GRAEF
Univ. of Wisconsin Madison Memorial Union

Mead & Hunt
Water Utility Operations Center Improvements

Short Elliott Hendrickson
Lake View Dual Zone Reservoir

Strand Associates
Verona Road Reconstruction Stage 1
Cecil Scheib
Chief Judge
New York University
New York, New York

Gabriel Bolas
Knoxville Utilities Board
Knoxville, Tennessee

James Cashwell
Olin Corporation
Cleveland, Tennessee

Rob Cary
Virginia Department of Transportation
Richmond, Virginia

Prof. Lawrence Chiarelli
NYU Tandon School of Engineering
Brooklyn, New York

Colonel (Ret.) Richard W. Dean II
National Defense University
Washington, D.C.

Paul Degges
Tennessee Department of Transportation
Nashville, Tennessee

Lisa E. DeMeo
Town of Salisbury
Salisbury, Massachusetts

Gary Tondorf-Dick
Massachusetts Institute of Technology
Cambridge, Massachusetts

Dr. Maria E. Moreyra Garlock
Princeton University
Princeton, New Jersey

Glenn Gottardo
Metropolitan Water Reclamation District of Greater Chicago
Chicago, Illinois

Jeff Griggs
City of Lexington
Lexington, Tennessee

Dr. Nenad Gucunski
Rutgers University
Piscataway, New Jersey

Dana N. Havlik
Maryland Department of Transportation
State Highway Administration
Baltimore, Maryland

Dr. Moujalli C. Hourani
Manhattan College
Riverdale, New York

Marcus Jensen (Ret.)
Southern Nevada Water Authority
Logandale, Nevada

Tina L. Johnston
New York City Department of Environmental Protection
Grahamsville, New York

Karen Kavanagh
Dallas Fort Worth International Airport
DFW Airport, Texas

Robin A. Kemper
Zurich North America
Lawrenceville, New Jersey

Cheryl Maletich
ComEd
Joliet, Illinois

Tom McCarthy
Lindsey Manufacturing
Sierra Madre, California

W. Todd Minnix
Fairfax County Department of Transportation
Fairfax, Virginia

Spencer Moore
University of Texas
MD Anderson Cancer Center
Houston, Texas

Robert Powers
San Francisco Bay Area Rapid Transit
Oakland, California

Dr. Laurence R. Rilett
University of Nebraska-Lincoln
Lincoln, Nebraska

Dr. Mary J.S. Roth
Lafayette College
Easton, Pennsylvania

Carl Schoedel
Kane County Division of Transportation
St. Charles, Illinois

Dr. Harry W. (Tripp) Shenton III
University of Delaware
Newark, Delaware

Greg Stukel
Illinois State Toll Highway Authority
Downers Grove, Illinois

Steve Swinson
Thermal Energy Corporation (TECO)
Houston, Texas

Ron Taylor
Nashville Metro Water Services
Nashville, Tennessee

Michael C. Wallace
The Port Authority of New York & New Jersey
Jersey City, New Jersey

Palmina Whelan
AA Corp Real Estate
Fort Worth, Texas

John Yonan
Cook County Department of Transportation and Highways
Chicago, Illinois

Scott Young
Glasgow Water Company
Glasgow, Kentucky

Judy L. Hricak
Chair
Gannett Fleming
Camp Hill, Pennsylvania

Andrew J. Ciancia
Vice-Chair
Langan Engineering & Environmental Services, Inc.
New York, New York

Herbert Berg
M & H Design Associates, LLC
Chicago, Illinois

W. Harold Cannon, Jr.
Cannon & Cannon, Inc.
Knoxville, Tennessee

Jeffrey Druckman
Bowman Consulting Group, Ltd.
Chicago, Illinois

Nancy A. Gruwell
HDR Engineering
Omaha, Nebraska

Michael T. Levar
Chicago, Illinois

Angela Marchetti
A. Morton Thomas and Associates, Inc.
Rockville, Maryland

Stuart D. Monical
Monical Associates
Highlands Ranch, Colorado

Peter F. Piattoni
CX Consulting, Inc.
Salisbury, Massachusetts

Daisy P. Nappier
ACEC
Washington, D.C.